本文目录一览:
为什么黑客都要会python语言,在黑客编程中有什么特别之处么
只有用过才会有所体会。 Python的强大在于有很多的第三方库的存在。 这样可以站在巨人的肩膀上,也避免了重复开发轮子。 很多你想要的东西有现成的库,使用python导入就可以。
比如一系列的破解带验证码的网站,python的图形库有自带识别验证码的库,你只需要负责使用。负责把破解的逻辑写下来就差不多。
用python能攻入网站后台吗?
python是一种胶水语言,适合处理日常的工作,比如自动化、爬取内容以及数据可视化,对于攻入网站后台来说,需要扎实的前端基础,有这种知识储备的人是不会用python来做的。
如何用 Python 爬取需要登录的网站
步骤一:研究该网站
打开登录页面
进入以下页面 “bitbucket.org/account/signin”。你会看到如下图所示的页面(执行注销,以防你已经登录)
仔细研究那些我们需要提取的详细信息,以供登录之用
在这一部分,我们会创建一个字典来保存执行登录的详细信息:
1. 右击 “Username or email” 字段,选择“查看元素”。我们将使用 “name” 属性为 “username” 的输入框的值。“username”将会是 key 值,我们的用户名/电子邮箱就是对应的 value 值(在其他的网站上这些 key 值可能是 “email”,“ user_name”,“ login”,等等)。
2. 右击 “Password” 字段,选择“查看元素”。在脚本中我们需要使用 “name” 属性为
“password” 的输入框的值。“password” 将是字典的 key 值,我们输入的密码将是对应的 value
值(在其他网站key值可能是 “userpassword”,“loginpassword”,“pwd”,等等)。
3. 在源代码页面中,查找一个名为 “csrfmiddlewaretoken” 的隐藏输入标签。“csrfmiddlewaretoken”
将是 key 值,而对应的 value 值将是这个隐藏的输入值(在其他网站上这个 value 值可能是一个名为 “csrftoken”,“ authenticationtoken” 的隐藏输入值)。列如:“Vy00PE3Ra6aISwKBrPn72SFml00IcUV8”。
最后我们将会得到一个类似这样的字典:
Python
payload = {
"username": "USER NAME",
"password": "PASSWORD",
"csrfmiddlewaretoken": "CSRF_TOKEN"
}
1
2
3
4
5
payload = {
"username": "USER NAME",
"password": "PASSWORD",
"csrfmiddlewaretoken": "CSRF_TOKEN"
}
请记住,这是这个网站的一个具体案例。虽然这个登录表单很简单,但其他网站可能需要我们检查浏览器的请求日志,并找到登录步骤中应该使用的相关的 key 值和 value 值。
步骤2:执行登录网站
对于这个脚本,我们只需要导入如下内容:
Python
import requests
from lxml import html
1
2
import requests
from lxml import html
首先,我们要创建 session 对象。这个对象会允许我们保存所有的登录会话请求。
Python
session_requests = requests.session()
1
session_requests = requests.session()
第二,我们要从该网页上提取在登录时所使用的 csrf 标记。在这个例子中,我们使用的是 lxml 和 xpath 来提取,我们也可以使用正则表达式或者其他的一些 *** 来提取这些数据。
Python
login_url = ""
result = session_requests.get(login_url)
tree = html.fromstring(result.text)
authenticity_token = list(set(tree.xpath("//input[@name='csrfmiddlewaretoken']/@value")))[0]
1
2
3
4
5
login_url = ""
result = session_requests.get(login_url)
tree = html.fromstring(result.text)
authenticity_token = list(set(tree.xpath("//input[@name='csrfmiddlewaretoken']/@value")))[0]
**更多关于xpath 和lxml的信息可以在这里找到。
接下来,我们要执行登录阶段。在这一阶段,我们发送一个 POST 请求给登录的 url。我们使用前面步骤中创建的 payload 作为 data 。也可以为该请求使用一个标题并在该标题中给这个相同的 url 添加一个参照键。
Python
result = session_requests.post(
login_url,
data = payload,
headers = dict(referer=login_url)
)
1
2
3
4
5
result = session_requests.post(
login_url,
data = payload,
headers = dict(referer=login_url)
)
步骤三:爬取内容
现在,我们已经登录成功了,我们将从 bitbucket dashboard 页面上执行真正的爬取操作。
Python
url = ''
result = session_requests.get(
url,
headers = dict(referer = url)
)
1
2
3
4
5
url = ''
result = session_requests.get(
url,
headers = dict(referer = url)
)
为了测试以上内容,我们从 bitbucket dashboard 页面上爬取了项目列表。我们将再次使用
xpath 来查找目标元素,清除新行中的文本和空格并打印出结果。如果一切都运行 OK,输出结果应该是你 bitbucket 账户中的
buckets / project 列表。
Python
tree = html.fromstring(result.content)
bucket_elems = tree.findall(".//span[@class='7810-e763-d30f-f42a repo-name']/")
bucket_names = [bucket.text_content.replace("n", "").strip() for bucket in bucket_elems]
print bucket_names
1
2
3
4
5
tree = html.fromstring(result.content)
bucket_elems = tree.findall(".//span[@class='e763-d30f-f42a-6238 repo-name']/")
bucket_names = [bucket.text_content.replace("n", "").strip() for bucket in bucket_elems]
print bucket_names
你也可以通过检查从每个请求返回的状态代码来验证这些请求结果。它不会总是能让你知道登录阶段是否是成功的,但是可以用来作为一个验证指标。
例如:
Python
result.ok # 会告诉我们最后一次请求是否成功
result.status_code # 会返回给我们最后一次请求的状态
1
2
result.ok # 会告诉我们最后一次请求是否成功
result.status_code # 会返回给我们最后一次请求的状态
就是这样。
python能入侵网站吗
入侵python的网站并不比其他网站更容易。层层路由后面只开着个80端口,任何请求来了只返回一个静态页面。。。你说这种情况下咋入侵。
问题里面提到的接收到服务器数据直接print,我问下提主你的服务器端是咋整的。自己用套接字写的还是用的框架。print一个东西当然有效果了,如果没有效果加个断点看看。